Machine learning framework for Mathematica - Creating understandable computational models from data

Autoren Mario Drobics
TitelMachine learning framework for Mathematica - Creating understandable computational models from data
BuchtitelProc. Mathematica Developer Conf. 2003
Typin Konferenzband
OrtChampaign, Illinois, USA
MonatApril
Jahr2003
Seitenonline
SCCH ID#325
Abstract

The machine learning framework for Mathematica is a collection of powerful machine learning algorithms integrated into a framework for the main purpose of data analysis. Fuzzy logic is one of its key techniques. The framework allows for combining different machine learning algorithms to solve one single problem. This combination of distinct algorithms may give the user unforeseen insights into its data. The algorithms are highly parameterizeable. Given this parameterizeability combined with the efficient core engine of the machine learning framework for Mathematica the user is able to look at his data with changed parameters in real time.